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Preface

This volume contains the proceedings of the 11th Workshop on Hybrid Systems:
Computation and Control (HSCC 2008) held in St. Louis, Missouri during April
22–24, 2008. The annual workshop on hybrid systems focuses on research in em-
bedded, reactive systems involving the interplay between symbolic/switching and
continuous dynamical behaviors. HSCC attracts academic as well as industrial
researchers to exchange information on the latest developments of applications
and theoretical advancements in the design, analysis, control, optimization, and
implementation of hybrid systems, with particular attention to embedded and
networked control systems.

New for this year was that HSCC was part of the inaugural CPSWEEK
(Cyber-Physical Systems Week) – a co-located cluster of three conferences:
HSCC, RTAS (Real-Time and Embedded Technology and Applications Sympo-
sium), and IPSN (International Conference on Information Processing in Sensor
Networks).

The previous workshops in the series of HSCC were held in Berkeley, USA
(1998), Nijmegen, The Netherlands (1999), Pittsburgh, USA (2000), Rome, Italy
(2001), Palo Alto, USA (2002), Prague, Czech Republic (2003), Philadelphia,
USA (2004), Zurich, Switzerland (2005) , Santa Barbara, USA (2006), and Pisa,
Italy (2007).

We would like to thank the Program Committee members and the reviewers
for an excellent job of evaluating the submissions and participating in the online
Program Committee discussions. We are grateful to the Steering Committee for
their helpful guidance and support. We would also like to thank Patrick Martin
for putting together these proceedings, and Jiuguang Wang for developing and
maintaining the HSCC 2008 website.

January 2008 Magnus Egerstedt
Bud Mishra
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Markov Set-Chains as Abstractions

of Stochastic Hybrid Systems�

Alessandro Abate1, Alessandro D’Innocenzo2,
Maria D. Di Benedetto2, and Shankar S. Sastry3

1 Department of Aeronautics and Astronautics, Stanford University - USA
aabate@stanford.edu

2 Department of Electrical Engineering and Computer Science,
Center of Excellence DEWS, University of L’Aquila - Italy

{adinnoce,dibenede}@ing.univaq.it
3 Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley - USA
sastry@eecs.berkeley.edu

Abstract. The objective of this study is to introduce an abstraction
procedure that applies to a general class of dynamical systems, that is
to discrete-time stochastic hybrid systems (dt-SHS). The procedure ab-
stracts the original dt-SHS into a Markov set-chain (MSC) in two steps.
First, a Markov chain (MC) is obtained by partitioning the hybrid state
space, according to a controllable parameter, into non-overlapping do-
mains and computing transition probabilities for these domains accord-
ing to the dynamics of the dt-SHS. Second, explicit error bounds for the
abstraction that depend on the above parameter are derived, and are
associated to the computed transition probabilities of the MC, thus ob-
taining a MSC. We show that one can arbitrarily increase the accuracy
of the abstraction by tuning the controllable parameter, albeit at an in-
crease of the cardinality of the MSC. Resorting to a number of results
from the MSC literature allows the analysis of the dynamics of the orig-
inal dt-SHS. In the present work, the asymptotic behavior of the dt-SHS
dynamics is assessed within the abstracted framework.

1 Introduction and Objectives

Hybrid Systems (HS) are dynamical systems with interleaved continuous and
discrete behaviors. Their great expressive power is offset by two main issues.
The first is the subtlety of their theoretical investigation: much research has been
directed to further the understanding of their system-theoretical properties. The
second is the problem of scalability, in particular with respect to computational
complexity. For instance, the formal verification of properties of the system (e.g.
model checking techniques [4]) is complicated by the continuity of the state-space
and by the interaction between continuous and discrete dynamics.

� This work was partially supported by European Commission under Project IST
NoE HYCON contract n. 511368, STREP project n. TREN/07/FP6AE/S07.71574/
037180 IFLY, and by the NSF grant CCR-0225610.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 A. Abate et al.

A technique which is often employed to cope with system complexity and di-
mensionality is abstraction. According to this approach, a system with a smaller
state space (possibly finite) is obtained, which is equivalent to the system under
study. Systems equivalence is usually defined via the notions of language equiva-
lence and bisimulation [2]. Recently, approximate notions of system equivalence
[7] have been developed, where a metric is introduced to quantify the distance
between the original system and the abstraction. The contribution in [6] pro-
poses an algorithm to construct an approximate abstraction of a HS by means
of a timed automaton. In [9] a notion of approximate bisimilarity is proposed
for a class of Stochastic Hybrid Systems (SHS), that is HS which are endowed
with probabilistic terms.

The present contribution introduces a formal abstraction procedure for a gen-
eral class of SHS. This work refers to a discrete time framework and intro-
duces the explicit presence of spatial guards in a class of SHS (named dt-SHS),
and shows that it is possible to express the transition probability function in a
compact way by employing the concept of probabilistic reachability. After intro-
ducing a partitioning procedure on the hybrid state space, the transition prob-
abilities between these partitions are approximately computed, thus generating
a Markov chain (MC). By raising some continuity assumptions on the entities
that characterize the dynamics of the dt-SHS, explicit error bounds are associ-
ated to the transition probabilities. These error bounds depend on the diameter
of the introduced partitions and can then be refined by this parameter. This al-
lows to formally set up a Markov set-chain (MSC) associated to the partitioning
procedure. The asymptotic behavior of the MSC is then related to that of the
dt-SHS.

The present technique is analogous to the line of work presented in [10], which
proposes a discretization of the continuous dynamics of a Markov process into
that of a MC, defined on a grid on the state-space. The contribution shows weak
convergence of the MC process to the original one, but no error bounds are ex-
plicitly derived. Both this work and [10] approximate the original process with a
probabilistic discrete structure. This provides a connection to model checking of
stochastic timed automata (which is a subclass of SHS), that has been investi-
gated in [3]. A general understanding of the area of probabilistic model checking
for SHS is however still far. As a first result towards this goal, we have shown the
ability to construct a finite state abstraction that possibly allows us to efficiently
compute the steady state of the original system with arbitrary precision.

2 The dt-SHS Model

This section formalizes the dt-SHS model first mentioned in section 1. The math-
ematical framework is inspired by that in [1], but we model the presence of a
physical forcing guard set rather than introducing state-dependent transition
probabilities. The use of a discrete time framework is motivated by the simplic-
ity in dealing with measurability issues for events on the underlying probability
space, as well as by the direct computability of transition probabilities.
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Definition 1 (dt-SHS). A discrete time stochastic hybrid system is a tuple
H = (Q,S∗,G, T, R), where

– Q := {q1, q2, . . . , qm}, for some finite m ∈ N, is the discrete component of
the state space;

– S∗ := ∪i∈Q{i}×D∗
i , is the hybrid state space, made up by a set of continuous

“domains” for each mode i ∈ Q, each of which is defined to be a compact
subset D∗

i ⊂ R
n(i). The function n : Q → N assigns to each i ∈ Q the

dimension of the continuous state space R
n(i);

– G := ∪i∈Q{i} × Gi,Gi = {gij; j ∈ Q, j �= i, gij ⊆ D∗
i } is the set of spatial

guards. We assume that ∀i, j, k ∈ Q, i �= j �= k, gij ∩ gik = ∅, and that the
guards have non-trivial volume: L(gij) �= 0, ∀i, j ∈ Q, j �= i, where L(A)
denotes the Lebesgue measure associated to any Borel subset A ⊂ B(D∗

i ). Let

us further introduce the set Di := D∗
i \

{
∪j∈Q

j �=i
gij

}
, the “invariant” of mode

i, and S := ∪i∈Q{i} × Di;
– T : B(D∗

(·)) × S → [0, 1] is a Borel-measurable stochastic kernel (the “tran-
sition kernel”) on D∗

(·) given S, which assigns to each s = (q, x) ∈ S a
probability measure on the Borel space (D∗

q ,B(D∗
q)): T (dx|(q, x));

– R : B(D∗
(·)) × G × Q → [0, 1] is a Borel-measurable stochastic kernel (the

“reset kernel”) on D∗
(·), given G×Q, that assigns to each s = (q, x) ∈ G, and

q′ ∈ Q, q′ �= q, a probability measure on the Borel space (D∗
(q′),B(D∗

(q′))):
R(dx|(q, x), q′). 
�

The system initialization at the initial time (say k = 0) is specified by some
probability measure π0 : B(S∗) → [0, 1] on the Borel space (S∗,B(S∗)). Here
again B(S∗) is the σ-field generated by the subsets of S∗ of the form ∪q{q}×Bq,
with Bq denoting a Borel set in D∗

q . For details on the measurability and metric
properties of H, the reader is invited to refer to [1,5]. Notice that the transition
and reset kernels (respectively T and R) have different domains of definition (S
and G ×Q), but the same support (D∗). Next, we define the notion of execution
for the above model (throughout the paper, random processes will be denoted
in bold fonts, while random variables in normal typesets).

Definition 2 (Execution). Consider a dt-SHS H = (Q, n,G, T, R). An
execution for H, associated with an initial distribution π0, is a stochastic process
{s(k), k ∈ [0, N ], N ∈ N} with values in S∗, whose sample paths are obtained
according to the following algorithm:

extract from S∗ a value s0 = (q0, x0) for s(0), according to the distribution π0;

for k = 0 to N − 1,

if there is a j �= qk, j ∈ Q, such that xk ∈ gqk,j,

then extract a value sk+1 ∈ S∗ for s(k + 1), according to R(· |sk, j);

else extract a value sk+1 ∈ S∗ for s(k + 1), according to T (· |sk);

end. 
�
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As mentioned, the introduced (autonomous) dt-SHS is related to the (controlled)
SHS in [1], where the additional presence of a stochastic kernel allows for the
presence of spontaneous jumps within the invariants. The theory developed in
this work can be extended to account for similar terms.

3 Markov Set-Chains

We define here the concept of Markov set-chain, which will be used as an abstrac-
tion framework for dt-SHS. We also recall some useful results from [8], which
contains a compendium of literature on the subject.

Definition 3 (Transition Set). Let P, Q ∈ R
n×n, with P, Q ≥ 0(that is

component-wise nonnegative matrices, not necessarily stochastic), with P ≤ Q.
We define a “transition set” as:

[P, Q] = {A ∈ R
n×n : A is a stochastic matrix and P ≤ A ≤ Q}. �

In the proceeding, we assume that the transition set [P, Q] �= ∅. When the
“bounding matrices” P, Q will be clear from the context, we will use the notation
[Π ] to denote such compact (possibly infinite) set of stochastic matrices. We can
define a Markov set-chain as a non-homogeneous, discrete-time Markov chain,
where the transition probabilities vary non-deterministically within a compact
transition set [Π ]. More formally,

Definition 4 (Markov set-chain). Let [Π ] be a transition set, i.e. a compact
set of n×n stochastic matrices. Consider the set of all non-homogeneous Markov
chains having all their transition matrices in [Π ]. We call the sequence

[Π ], [Π ]2, · · ·

a Markov set-chain, where [Π ]k is defined by induction as the compact set of all
possible products A1, · · · , Ak, such that, ∀i = 1, · · · , k, Ai ∈ [Π ].

Similarly, let [π0] be a compact set of 1 × n stochastic vectors, introduced as
in Def. 3. We call [π0] the initial distribution set. 
�

The compact set [πk] = [π0][Π ]k is the k-th distribution set and

[π0], [π0][Π ], · · ·

is the Markov set-chain with initial distribution set [π0].
It can be shown that each element [πk] is a convex polytope if [π0] is a convex

polytope and [Π ] is a transition set. It should be noticed that the number of
vertices of [πk] increases with k, thus the computational burden to obtain [πk] for
large values of k should be accounted for. However, it is possible to compute tight
(see [8]) upper and lower bounding matrices Lk, Hk for [πk] in a very efficient
way, in particular the computation of Lk, Hk can be recursively obtained from
Lk−1, Hk−1.
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Definition 5 (Coefficient of Ergodicity). For any stochastic matrix A, its
coefficient of ergodicity is defined as follows:

T (A) =
1
2

max
i,j

||ai − aj ||,

where ai is the i–th row of A and || · || on a vector is the standard 1–norm. If
T (A) < 1, A is said to be scrambling. 
�

The above definition can be directly extended to Markov set-chains:

Definition 6. For any transition set [Π ], its coefficient of ergodicity is defined
as follows:

T ([Π ]) = max
A∈[Π]

T (A). �

Notice that since T (·) is a continuous function and [Π ] a compact set, the maxi-
mum argument of T ([Π ]) exists. Also notice that T ([Π ]) ∈ [0, 1], asT (A) ∈ [0, 1].
This value provides a measure of the “contractive” nature of the Markov set-
chain: the smaller T ([Π ]), the more contractive the MSC. This will become clear
when studying the asymptotic properties of the MSC, and is related to the reg-
ularity properties of the matrices that build up the MSC [8]. The exact value of
T ([Π ]) can be hard to compute, but it can be upper bounded as follows:

Theorem 1. Let [Π ] be the interval [P, Q] and A ∈ [Π ], then:

|T ([Π ]) − T (A)| ≤ ||Q − P ||

The above matrix norm is taken from [8] and is a modification of the induced
1-norm. The following notion connects to Definition 5:

Definition 7 (Scrambling Integer). Suppose r ≥ 1 is such that
T (A1 · · ·Ar) < 1, ∀A1, · · · , Ar ∈ [Π ]. Then [Π ] is said to be product scram-
bling and r its scrambling integer. 
�

We now illustrate some results on the convergence of MSC.

Theorem 2. Given a product scrambling MSC with transition set [Π ] and ini-
tial distribution set [π0], then there exists a unique limit set [π∞] such that
[π∞][Π ] = [π∞]. Moreover, let r be the scrambling integer of [Π ]. Then for
any positive integer h, and according to the Hausdorff metric d(·) on compact
sets:

d([πh], [π∞]) ≤ Kβh (1)

where K = [T ([Π ]r)]−1d([π0], [π∞]) and β = T ([Π ]r)
1
r < 1. Thus

lim
h→∞

[πh] = lim
h→∞

[π0][Π ]h = [π∞].

�
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As we argued before, the exact computation of [π∞] can be expensive. However, it
is possible to use the upper and lower bounding matrices Lk, Hk mentioned above
to obtain an accurate estimate of [π∞] with a reasonable computational com-
plexity. In fact, Lk, Hk converge to a value L∞, H∞ such that [π∞] ⊆ [L∞, H∞].
Define the diameter of a compact set (referred to either matrices or vectors) as

Δ([Π ]) = max
A,A′∈[Π]

||A − A′||.

The following result provides an efficient procedure to compute an upper bound
for the diameter of the limit set [π∞].

Theorem 3. Given a product scrambling Markov set-chain with transition set
[Π ] = [P, Q] and such that T ([Π ]) < 1, then

Δ([π∞]) ≤ Δ([Π ])
1 − T ([Π ])

≤ ||Q − P ||
1 − T (A) − ||Q − P || ,

for any A ∈ [Π ]. The second inequality holds only if T (A) + ||Q − P || ≤ 1. �

4 Probabilistic Dynamics

The model described in Definition 1 is quite general and allows for a wealth
of possible behaviors. However, even in the case of further knowledge of the
structure of the dynamics (beyond the general stochastic kernels T, R that char-
acterize it), is in general not translatable into a closed-form expression for the
solution process of H. Thus, in order to study the dynamical properties of H, two
directions can be pursued. The first looks at the ensemble of possible realizations
that originate from the initial distribution, according to the steps in Definition
2. Monte Carlo simulations are a known example of this approach. The second,
instead, characterizes probabilistically the presence of the solution process in
certain regions of S∗, as time progresses. More precisely, it is of interest to de-
fine the following likelihood: given a point s0 ∈ S∗, what is the probability that
the solution process s(·) of H, starting from s0, is located in the set A ∈ B(S∗)
at time k > 0? Similarly, given a point s0 ∈ S∗, what is the probability that the
solution process s(·) of H stays within the set A ∈ B(S∗), if s0 ∈ A, for all the
time k ∈ [0, N ], N < ∞?

These and similar quantities leverage the ability of defining and computing
the concept of probabilistic reachability [1]. Interestingly, these stochastic reach-
ability problems are related to the two analogous deterministic approaches taken
in [6] for constructing finite abstractions of (deterministic) HS. The two prob-
abilistic kernels T and R depend on, respectively, the invariant and the guard
sets. We are thus particularly interested in computing the transition probabilities
between these subsets of the hybrid state space. For instance, considering two
modes q, q′ ∈ Q, we call pq,q′(x) the probability that a trajectory, starting from
a point (q, x) ∈ S, has to transition in a time step (according to T (·|(q, x))) into
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any other domain q′ �= q by intersecting the corresponding guard, or possibly to
continue evolving in q′ = q:

pq,q′(x) �
∫

gq,q′
T (dy|(q, x)), if q′ �= q, (2)

pq,q(x) �
∫
Dq

T (dy|(q, x)) = 1 −
∑
q′∈Q
q′ �=q

∫
gq,q′

T (dy|(q, x)).

The case where (q, x) ∈ S∗\S, which is associated to the probability that the
trajectory is reset, according to R(·|(q, x), q′), into an invariant q′ �= q, is similar.
Let us denote this probability p(q,q′),q′(x):

p(q,q′),q′(x) �
∫
Dq′

R(dy|(q, x), q′). (3)

Notice that, as the support of T and of R coincides, the contribution of both
terms is similar, except for the fact that T is associated with a one time-step
continuous motion, while R to an instantaneous reset.

Investigating similar quantities for dynamics over a longer time interval in-
volves conditioning the probability backwards in time and referring to the “tem-
plate quantities” discussed above. For instance, we may be interested in the
following transition, for q, r, s ∈ Q, q �= r, r �= s: x ∈ gq,r

R→ Dr
T→ gr,s; and the

associated probability p(q,r),r(x)pr,s(·). This is computed by:

P (s(1) ∈ gr,s|s(0) = (q, x) ∈ gq,r) =
∫
Dr

∫
gr,s

R(dy|(q, x), r)T (dz|(r, y))

=
∫
Dr

R(dy|(q, x), r)pr,s(y) (4)

This quantity shows that the contributions of the one-step probabilities over time
have to be necessarily “averaged” over the influence of the stochastic kernels
that precede them. This will also hold with reference to a particular initial
distribution π0. As already mentioned, the interplay between transition and reset
probabilities is a characteristic feature of SHS.

The terms in (2)-(3), and their multiplications, are then characteristic of the
computations we want to perform to study the dynamics of the dt-SHS H. In
principle, we may be able to associate a transition probability to each couple
of elements taken from the set of invariants and guards. This would allow to
abstract the dynamics of H into those of a discrete m2-dimensional MC (where
m = card(Q)). However, by closely looking at the quantity in (2) [resp. (3)], it
becomes clear that it is necessary to compute the transition probabilities over
the whole invariant Dq [over the whole guard gq,q′ ], averaged over the contri-
bution of the incoming reset maps R(·|(·, ·), q) [the transition kernel T (·|(q, ·))].
To fully make sense, these last quantities would have to depend on other proba-
bilities, and so on backwards, until integrating over an initial distribution. This



8 A. Abate et al.

computation is rather unfeasible, and its bottleneck hinges on the dependence
of T and R on the continuous component of the hybrid state space.

Rather than aiming, as just proposed, at abstracting the dynamics of the dt-
SHS H into an m2-dimensional MC, we may instead allow an abstraction into
a higher dimensional structure, while improving the precision of the approxima-
tion. The technique to achieve this, described in the following section, is based
on a continuity assumption on the dynamics, and a state-partitioning procedure.

5 Abstraction Procedure

This section describes the abstraction procedure for the dt-SHS model H of
section 2. The dt-SHS H will be abstracted into a Markov set-chain M, described
by a one-step transition set [Π ] = [P, Q]. The computations involved in obtaining
the abstraction are reduced to integrations over the continuous part of the hybrid
state space. The procedure introduces some necessary approximations in order to
perform the computations feasibly. However, explicit bounds on these errors will
be obtained, provided some continuity assumptions are raised. The association
of these bounds to the computed transition probabilities allows a connection
with the theory of MSC, as it provides a direct definition of the transition set
[Π ] of M. The precision of the abstraction will depend on a parameter δ. It is
desirable for the abstraction to be endowed, in the limit as δ → 0, with some
convergence properties to the original dt-SHS H.

Approximation of State-Dependent Transitions and Resets

As discussed in section 4, the dependence of transition and reset kernels on,
respectively, the invariant and the guard set, and their continuous supports,
renders the computation of transition probabilities via nested integrals of prod-
uct terms as in (4) computationally unattractive. Introducing some “regularity
assumptions” on the probabilistic kernels, it is possible to achieve a “state-
memoryless” approximation for these transition probabilities, whereby their cal-
culation does not depend on the continuous part of the hybrid state-space S.

Let us suppose that the stochastic kernels T and R, which depend on the
continuous component of the hybrid state in Definition 1 of H, admit densities
respectively t and r. Similarly, let us assume the initial probability distribution
π0 has a density p0. It is supposed that p0, t, and r satisfy the following Lipschitz
condition.

Assumption 1 (Lipschitz Continuity of the Stochastic Kernels)

1. |p0(s) − p0(s′)| ≤ k0‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗
q ;

2. |t(x̄|s) − t(x̄|s′)| ≤ kT ‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ Dq, and
(q, x̄) ∈ D∗

q ;
3. |r(x̄|s, q̄) − r(x̄|s′, q̄)| ≤ kR‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗

q\Dq,
(q̄, x̄) ∈ D∗̄

q , and q̄ ∈ Q, q̄ �= q,

where k0, kT , and kR are finite positive constants. 
�


