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Preface

This volume contains the papers selected for presentation at the Third Interna-
tional Conference on Rough Sets and Current Trends in Computing (RSCTC
2002) held at Penn State Great Valley, Malvern, Pennsylvania, U.S.A., 14–16
October 2002. Rough set theory and its applications constitute a branch of
soft computing that has exhibited a significant growth rate during recent years.
RSCTC 2002 provided a forum for exchanging ideas among many researchers
in the rough set community and in various areas of soft computing and served
as a stimulus for mutual understanding and cooperation. In recent years, there
have been a number of advances in rough set theory and applications. Hence, we
have witnessed a growing number of international workshops on rough sets and
their applications. In addition, it should be observed that one of the beauties
of rough sets and the rough set philosophy is that it tends to complement and
reinforce research in many traditional research areas and applications. This is
the main reason that many international conferences are now including rough
sets into the list of topics.

It is our great pleasure to dedicate this volume to Professor Zdzislaw Pa-
wlak, who created rough set theory over twenty years ago. The growth of rough
set theory and applications owes a great deal to Professor Pawlak’s vibrant
enthusiasm and wit as well as his great generosity towards others, especially
in encouraging and advising beginners in rough sets. The depth, breadth, and
richness of current rough set research are directly traceable to Professor Pawlak’s
inventiveness and the richness of his many insights and ideas concerning data
mining, machine learning, logic, and mathematics. The computational features
of rough sets are also giving rise to new forms of neurocomputing based on rough
sets and to a family known as rough processors for digital computers. We would
also like to congratulate Professor Pawlak, who received an honorary doctorate
(Doctor Honoris Causa) from Poznań Polytechnic University, Poznań, Poland
on 10 April 2002.

We wish to express our gratitude to Professors Zdzislaw Pawlak and Lotfi A.
Zadeh, who accepted our invitation to serve as honorary chairs and to present
keynote papers for this conference. We also wish to thank Professors J. Komoro-
wski, T.Y. Lin, D.W. Russell, R. Slowiński, and I.B. Türksen for accepting our
invitation to be plenary speakers at RSCTC 2002.

The papers contributed to this volume reflect advances in rough sets as well
as complementary research efforts in the following areas:

– Rough set foundations
– Rough sets and fuzzy sets
– Rough neurocomputing
– Rough sets and probabilistic reasoning
– Rough set methods
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– Rough set applications in biology, classification, dynamical systems, image
processing, medical diagnosis, musicology, neurology, pattern recognition,
robotics and robotic control systems, signal analysis, software engineering,
and web mining

– Computing with words and granular computing
– Machine learning and pattern recognition
– Data mining

We wish to express our thanks to the members of the Advisory Board: N.
Cercone, J. GrzymaAla-Busse, T.Y. Lin, A. Nakamura, S.K. Pal, L. Polkowski, R.
Slowiński, H. Tanaka, S. Tsumoto, Y.Y. Yao, and W. Ziarko for their contribu-
tion to the scientific program of this conference. We also wish to thank the local
committee for their help in organizing this conference: P. McFadden, C. Neill,
K. Patel, F. Ramsey, and S.S. Slish.

The accepted papers that appear in this volume were selected from over 100
submitted draft papers. These papers were divided into regular communications
(each allotted 8 pages) and short communications (each allotted 4 pages) on the
basis of reviewer evaluations. Most papers received three or more reviews. The
reviewing process itself rested with the RSCTC 2002 Program Chairs, members
of the RSCTC 2002 Advisory Board, and the following members of the Program
Committee: P. Apostoli, M. Beynon, H.D. Burkhard, G. Cattaneo, J.S. Deogun,
P. Doherty, D. Dubois, I. Duentsch, S. Greco, X. Hu, M. Inuiguchi, J. Järvinen, J.
Komorowski, B. Kostek, J. Koronacki, M. Kryszkiewicz, C.-J. Liau, P. Lingras,
B. Matarazzo, E. Menasalvas, Z. Michalewicz, R. Michalski, N. Michinori, S.
Miyamoto, M. Moshkov, T. Murai, H.S. Nguyen, E. OrAlowska, W. Pedrycz, M.
Quafafou, S. Ramanna, Z. Raś, J. Stefanowski, J. Stepaniuk, Z. Suraj, A. SzaAlas,
M. Szczuka, A. Wakulicz-Deja, G. Wang.

We also would like to acknowledge help in reviewing from P. Balbiani, J.
Bazan, K. Dembczynski, D. Niwiński, G. Góra, Y. Kawahara, R. Latkowski, J.
MaAluszyński, H. Midelfart, J.M. Peña, A. Radzikowska, D. Ślez̧ak, P. Synak, S.
Wilk, A. Wojna, J. Wróblewski, M. Zawadowski.

Special thanks are also extended to Marcin Szczuka, Jakub Wróblewski, and
Dominik Ślez̧ak for their help in typesetting and preparing the RSCTC 2002
proceedings.

Our special thanks go to all individuals who submitted valuable papers for
the RSCTC 2002 conference and to all conference participants.

We also wish to express our thanks to Alfred Hofmann at Springer-Verlag
for his support and cooperation.

October 2002 James Alpigini
James F. Peters
Andrzej Skowron

Ning Zhong
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Local Attribute Value Grouping for Lazy Rule Induction . . . . . . . . . . . . . . . . 405
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Abstract. This paper concerns some aspects of rough set based data
analysis. In particular rough set look on Bayes’ formula leads to new
methodology of reasoning from data and shows interesting relationship
between Bayes’ theorem, rough sets and flow graphs. Three methods of
flow graphs application in drawing conclusions from data are presented
and examined.

MOTTO:
“It is a capital mistake to theorise before one has data”

Sherlock Holmes
In: A Scandal in Bohemia

1 Introduction

No doubt that the most famous contribution to reasoning from data should be
attributed to the renowned Mr. Sherlock Holmes, whose mastery of using data
in reasoning has been well known world wide for over hundred years.

More seriously, reasoning from data is the domain of inductive reasoning,
which uses data about sample of larger reality as a starting point of inference
– in contrast to deductive reasoning, where axioms expressing some universal
truths are used as a departure point of reasoning.

In the rough set approach granular structure of data imposed by the in-
discernibility relation is used do discover patterns in data. In rough set theory
patterns in data can be characterized by means of approximations, or equiv-
alently by decision rules induced by the data. With every decision rule in a
decision table three coefficients are associated: the strength, the certainty and
the coverage factors of the rule. It is shown that these coefficients satisfy Bayes’
theorem and the total probability theorem. This enables us to use Bayes’ theo-
rem to discover patterns in data in a different way from that offered by standard
Bayesian inference technique employed in statistical reasoning, without referring
to prior and posterior probabilities, inherently associated with Bayesian infer-
ence methodology. Besides, a new form of Bayes’ theorem is introduced, based
on the strength of decision rules, which simplifies essentially computations.

J.J. Alpigini et al. (Eds.): RSCTC 2002, LNAI 2475, pp. 1–9, 2002.
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Furthermore, it is shown that the decision rules define a relation between
condition and decision granules, which can be represented by a flow graph. The
certainty and coverage factors determine a “flow of information” in the graph,
ruled by the total probability theorem and Bayes’ theorem, which shows clearly
the relationship between condition and decision granules determined by the de-
cision table. This leads to a new class of flow networks, unlike to that introduced
by Ford and Fulkerson [1]. The introduced flow graphs may have many appli-
cations not necessarily associated with decision tables, but this requires further
study.

The decision structure of a decision table can be represented in a “decision
space”, which is Euclidean space, in which dimensions of the space are deter-
mined by decision granules, points in the space are condition granules and co-
ordinates of the points are strengths of the corresponding rules. Distance in the
decision space between condition granules allows to determine how “distant” are
decision makers in view of their decisions. This idea can be viewed as a general-
ization of the indiscernibility matrix [7], basic tool to find reducts in information
systems. Besides, the decision space gives a clear insight in the decision structure
imposed by the decision table.

A simple tutorial example is used to illustrate the basis ideas discussed in
the paper.

2 Basic Concepts

In this section we recall basic concepts of rough set theory [4,5,6,7].
An information system is a pair S = (U,A), where U and A, are non-empty

finite sets called the universe, and the set of attributes, respectively such that
a : U → Va, where Va, is the set of all values of a called the domain of a. Any
subset B of A determines a binary relation I(B) on U , which will be called an
indiscernibility relation, and defined as follows: (x, y) ∈ I(B) if and only if a(x) =
a(y) for every a ∈ A, where a(x) denotes the value of attribute a for element x.
Obviously I(B) is an equivalence relation. The family of all equivalence classes
of I(B), i.e., a partition determined by B, will be denoted by U/I(B), or simply
by U/B; an equivalence class of I(B), i.e., block of the partition U/B, containing
x will be denoted by B(x) and called B-granule induced by x.

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible (indis-
cernible with respect to B). Equivalence classes of the relation I(B) (or blocks of
the partition U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in the information system two disjoint classes of attributes,
called condition and decision attributes, respectively, then the system will be
called a decision table and will be denoted by S = (U,C,D), where C and D are
disjoint sets of condition and decision attributes, respectively and C ∪D = A.

C(x) and D(x) will be referred to as the condition granule and the decision
granule induced by x, respectively.

An example of a decision table is shown in Table 1.
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Table 1. An example of decision table

Fact no. Driving conditions Consequence N

weather road time accident

1 misty icy day yes 80

2 foggy icy night yes 140

3 misty not icy night yes 40

4 sunny icy day no 500

5 foggy icy night no 20

6 misty not icy night no 200

In the table, 6 facts concerning 980 cases of driving a car in various driving
conditions are presented. In the table columns labeled weather, road and time,
called condition attributes, represent driving conditions. The column labeled by
accident, called decision attribute, contains information whether an accident has
occurred or not. N denotes the number of analogous cases.

3 Decision Rules

Each row of the decision table determines a decision rule, e.g., row 1 determines
the following decision rule “if weather is misty and road is icy and time is day
then accident occurred” in 80 cases.

Let S = (U,C,D) be a decision table. Every x ∈ U determines a sequence
c1(x), . . . , cn(x), d1(x), . . . , dm(x) where {c1, . . . , cn} = C and {d1, . . . , dm} = D.

The sequence will be called a decision rule induced by x (in S) and denoted
by c1(x), . . . , cn(x) → d1(x), . . . , dm(x) or in short C →x D.

The number suppx(C,D) = |C(x) ∩ D(x)| will be called a support of the
decision rule C →x D and the number

σx (C,D) =
suppx (C,D)

|U | ,

will be referred to as the strength of the decision rule C →x D, where |X| denotes
the cardinality of X.

With every decision rule C →x D we associate a certainty factor of the
decision rule, denoted cerx(C,D) and defined as follows:

cerx (C,D) =
|C (x) ∩D (x) |

|C (x) | =
σx (C,D)
π (C (x))

,

where C(x) �= ∅ and π(C(x)).
The certainty factor may be interpreted as conditional probability that y be-

longs to D(x) given y belongs to C(x), symbolically πx(D|C), i.e., cerx(C,D) =
πx(D|C).
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If cerx(C,D) = 1, then C →x D will be called a certain decision rule; if
0 < cerx(C,D) < 1 the decision rule will be referred to as an uncertain decision
rule.

Besides, we will also use a coverage factor (see [8]) of the decision rule, de-
noted covx(C,D) defined as

covx (C,D) =
|C (x) ∩D (x) |

|D (x) | =
σx (C,D)
π (D (x))

,

where D(x) �= ∅ and π(D(x)) = |D(x)|
|U | . Similarly

covx (C,D) = πx (C|D) .

If C →x D is a decision rule then D →x C will be called an inverse decision
rule. The inverse decision rules can be used to give explanations (reasons) for a
decision.

In Table 2 the strength, certainty and coverage factors for Table 1 are given.

Table 2. Characterization of decision rules

fact no. Strength Certainty Coverage

1 0.082 1.000 0.308

2 0.143 0.877 0.538

3 0.041 1.167 0.154

4 0.510 1.000 0.695

5 0.020 0.123 0.027

6 0.204 0.833 0.278

4 Properties of Decision Rules

Decision rules have important probabilistic properties which are discussed next
[2,3].

Let C →x D be a decision rule. Then the following properties are valid:
∑

y∈C(x)

cery (C,D) = 1 (1)

∑
y∈D(x)

covy (C,D) = 1 (2)

π (D (x)) =
∑

y∈C(x)

cery (C,D) · π (C (x)) = (3)

=
∑

y∈C(x)

σy (C,D)
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π (C (x)) =
∑

y∈D(x)

covy (C,D) · π (D (y)) = (4)

=
∑

y∈D(x)

σy (C,D)

cerx (C,D) =
covx (C,D) · π (D (x))

π (C (x))
= (5)

=
σx (C,D)
π (C (x))

covx (C,D) =
cerx (C,D) · π (D (x))

π (D (x))
= (6)

=
σx (C,D)
π (D (x))

That is, any decision table, satisfies (1)–(6). Observe that (3) and (4) refer
to the well known total probability theorem, whereas (5) and (6) refer to Bayes’
theorem.

Thus in order to compute the certainty and coverage factors of decision rules
according to formula (5) and (6) it is enough to know the strength (support) of
all decision rules only.

Formulas (5) and (6) can be rewritten as

cerx (C,D) = covx (C,D) · γx (C,D) (7)

covx (C,D) = cerx (C,D) · γ−1
x (C,D) (8)

where γx(C,D) = |D(x)|
|C(x)| =

cerx(C,D)
covx(C,D)

Let us observe that

covx (C,D) · π (D (x)) = σx (C,D) (9)

cerx (C,D) · π (C (x)) = σx (C,D) (10)

5 Granularity of Data and Flow Graphs

With every decision table we associate a flow graph, i.e., a directed acyclic graph
defined as follows: to every decision rule C →x D we assign a directed branch x
connecting the input node C(x) and the output node D(x). Strength of the deci-
sion rule represents a throughflow of the corresponding branch. The throughflow
of the graph is governed by formulas (1),...,(6).

Classification of objects in this representation boils down to finding the max-
imal output flow in the flow graph, whereas explanation of decisions is connected
with the maximal input flow associated with the given decision.

A flow graph for decision table shown in Table 1 is given in Figure 1.
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Fig. 1. Flow graph

6 Decision Space

With every decision table having one n-valued decision attribute we can associate
n-dimensional Euclidean space, where decision granules determine n axis of the
space and condition granules determine points of the space. Strengths of decision
rules are to be understood as coordinates of corresponding granules.

Distance δ(x, y) between granules x and y in the n-dimensional decision space
is defined as

δ (x, y) =

√√√√
n∑

i=1

(xi − yj)
2

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors of strengths of cor-
responding decision rules.

A decision space for Table 1 is given in Figure 2.
Distances between granules A, B, C and D are shown in Table 3.

Table 3. Distance matrix

A B C D

A

B 0.064

C 0.208 0.210

D 0.517 0.510 0.309


